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THE MEASUREMENT OF RESIDUAL STRESSES
BY THE USE OF PHOTOELASTIC GAUGES

G. J. MATTHEWS and C. J. HOOKE

Department of Mechanical Engineering, University of Birmingham, Birmingham, England

Abstract-0ne method of measuring residual stresses in metals is to bond an annular photoelastic disc to the
surface of the metal and drill a central hole through the gauge into the underlying material. If the gauge is
then viewed in polarized light a fringe pattern is observed. The purpose of this paper is to obtain a simple
and accurate relationship between the fringe orders measured and the residual stresses present. Part I deals
with the calculation of the displacements in the metal. In Part II the resulting stress situation in the gauge is
determined. Calibration factors are then presented for a wide range of gauge geometries.

NOTATION

a hole radius
b gauge outside radius
f fringe stress coefficient for gauge material
r radius

gauge or metal thickness
u radial displacement
v hoop displacement
w axial displacement
B bla
N fringe order
R ria
SIS2 principal residual stresses
T tla
U ula
V via
W wla
Z zla
K, fJ constants
, stress (using tensor notation)
Jl shear modulus
q Poisson's ratio
Subscripts
g gauge
b metal

I. THE DISPLACEMENTS AND STRESSES AROUND HOLES IN
PLATES OF ARBITRARY THICKNESS

INTRODUcnON

THE "hole drilling" technique is used for the measurement ofeither residual or live stresses
in an elastic material. The application of this technique involves drilling a small hole to
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a limited depth in a stressed material and relating the resulting change in the displacements
or strains in the region of the hole to the magnitude and directions of the principal stresses
in this region. Nisidi [IJ and Nisidi and Takabayashi [2] have developed a method suitable
for the practical application of this technique.

In their method, an annular photoelastic disc is bonded to the surface of the metal
and a central hole is drilled through the gauge into the underlying metal. If the gauge is
then viewed in polarized light a fringe pattern is observed. From the symmetry of this
pattern the directions of the principal stresses are readily obtained. Their magnitudes,
however, are greatly underestimated if they are calculated using "plane strain" theory
unless the gauges used are thin. This error is attributed to "shear lag" i.e. although the
strains at the surface of the metal are transmitted faithfully to the base of the gauge they
progressively diminish through its thickness and consequently the fringe orders produced
are lower than those predicted by simple theory.

The purpose of this paper is to describe a method whereby the effects ofshear lag may be
accurately predicted and to obtain a simple relationship between the fringe orders measured
and the residual stresses present in the metal. Such an analysis may be conveniently
considered as two individual problems. The first problem is to determine the change in
the displacements at the surface of the metal upon drilling the hole. In solving this problem
the stress concentration effect ofholes in plates ofarbitrary thickness may also be examined.
Then, having obtained the displacements at the metal surface, the second problem is to
determine the fringe pattern produced in the gauge.

To make the problem of determining the metal displacements more tractable the
following assumptions are made:

1. The metal is an elastic, homogeneous, isotropic material.
2. The diameter of the drilled hole is small compared to the overall dimensions of

the metal.
3. The modulus of elasticity of the photoelastic material is small compared to that

of the metal and hence the reinforcing effect of the gauge on the underlying metal may be
ignored.

4. The principal stresses in the region of the point at which their values are to be
determined are uniform.

The problem then reduces to a three dimensional boundary value problem involving
the determination of the displacements of a cylindrical body whose terminal boundaries
are free from loads and whose lateral boundaries have prescribed loads acting upon them.
Furthermore, the principal stresses in the region of the hole may be regarded as a linear
combination of two basic stress systems. The first is one in which the principal stresses
are of the same sign and equal in magnitude and the second is one in which the principal
stresses are equal in magnitude but opposite in sign. Having obtained the displacements
in the metal for each of these two systems, the displacements for any other stress system
may be found by superposition.

CALCULATION OF THE STRESSES AND DISPLACEMENTS

(a) Equal principal stresses
The "plane stress" solution for the first system is:

1-(J a2

2Jlu = ---r+­
1+(J r
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2J1V = 0

20"
2J1w = ---z

1+0"

195

This solution satisfies the prescribed boundary conditions of this system and is an
admissible solution to the three dimensional problem.

(b) Equal but opposite principal stresses
The "plane" solution to the second system satisfies the lateral boundary conditions but

gives an erroneous axial stress on the terminal boundary. The failure of this elementary
solution to satisfy the boundary conditions of the second stress system necessitates the
consideration of existing approximate solutions to the problem [3-7]. It is apparent that
the prime purpose of these approximate solutions has been to determine the stress con­
centration effect of holes in plates of arbitrary thickness. Although these are predicted to
an accuracy within the realms of physical significance there are significant discrepancies
in the displacement fields established by these techniques. Furthermore, it is difficult to
establish a degree of accuracy for anyone of these solutions except for that for an infinitely
thick plate which is presented by Youngdahl and Sternberg [7].

In order to obtain an accurate analysis of the "shear lag" effect it was considered
necessary to obtain the displacement field in the metal precisely and it was therefore
decided to solve this problem using the point matching technique. This technique super­
imposes a number of basic solutions to the elasticity equations so as to approximately
satisfy the prescribed boundary conditions at a number of points on the surface ofthe body.
The use of the point matching technique is described in Ref. [8] and the more recent applica­
tions of the technique are given in Refs. [9-13].

THEORY

Of immediate interest in the solution of the shear lag problem is the change in the
displacement field at the surface of the metal upon drilling a hole in the pre-stressed
material. However, from a general engineering aspect it is the total change in the displace­
ment field from the unstressed state that is of major interest as this determines the stress
concentration effect of the hole. The difference between these two displacement fields is
merely the displacement field produced by loading the metal without the hole present
and a well-known solution exists for this problem. It is therefore irrelevant which of the
displacement fields is determined. For comparison purposes it is convenient to determine
the total change in the displacement field from the unstressed state as this has been the
purpose of previous approximate solutions. This will also enable the stress concentration
effect of holes in plates of arbitrary thickness to be studied.



196 G. J. MATTHEWS and C. J. HOOKE

The boundary conditions to be satisfied in determining this displacement field are:
at R = 00

at R = 1

!RR = cos 28 !Re = -sin 28

and at Z = ±TI2

! ZZ = !ez = ! RZ = O. (1)

To satisfy these boundary conditions using the point matching technique it is necessary
to determine initially a number of basic solutions to the elasticity equations. Each of these
solutions will correspond to a different set of conditions on both the terminal and lateral
boundaries of the plate. The boundary conditions given by equation (1) are then approxi­
mately satisfied by superpositioning these basic solutions, so as to minimize the sum of
the squares of the errors in the boundary conditions at a number of points on the surface
(see Appendix 1). It is advantageous in this technique to choose solutions that individually
approximate to the actual stress distribution in the body so as to reduce the number of
basic solutions needed to obtain a specified accuracy.

From considerations of the symmetry of the plate it is reasoned that the radial and
circumferential displacements are symmetrical and the axial displacements are skew
symmetrical about the mid-section of the plate. The basic solutions which are to be super­
positioned to yield the final approximate result must also have this symmetry and this
leads to a choice of basic displacement functions of:

U = ucos KZ cos 28

v = ii cos KZ sin 20

W = Wsin KZ cos 28

(2)

(4)

(3)

where the line Z = 0 corresponds to the mid-section of the plate, and u, ii, W, are determined
by initially substituting equations (2) into the stress-displacement equations of elasticity
to obtain the following stresses:

!RR (dU)2J.lb cos 28 = dR +P cos KZ = 1"Rli cos KZ

1"ee (2ii+U)2 . 28 = --+P cos KZ = 1"eiiCOS KZ
J.lbsm R

!ZZ
8

= (kw+ fJ) cos KZ = !zz cos KZ
2J.lb cos 2

!RZ (dW ). KZ . KZ--~8 = -d -Ku sm = !liZ sm
J.lb cos 2 R

J.lb ::: 28 = - (Kii +2i) sin KZ = !ez sin KZ

! Re ( dii 2u +ii). 8 = -d--- cosKZ = !RiiCOsKZ
J.lbsm 2 R R

(5)

(6)

(7)

(8)
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f3 = 1:2a(::+2ii;U +KW).

Substitution of equations (3)-(8) into the equilibrium equations yields three differential
equations involving u, ii and W:

_ d
2u (l a) du ~ dii K dw _(3-50" 1-20"K2)U_(3-4a)ii = 0 (9)

(l a)dR2 R dR+ R dR+ 2 dR R 2 + 2 R 2

d
2

ii (1 20") dii 2 du (9-1Oa 2 )_ (6-8a)_ 2K_
(l-2a)dR 2 dR -R dR - ~+K (l 20") v-~ u-Rw = 0 (l0)

d 2w (1-2a)dw du k_ 2K_ (4(l-2a) 2 )_
(1-2a)dR2+ R dR- kdR-Ru-lfV - R2 +2K (l-a) w = O. (11)

The solution of equations (9)-(11) gives the radial distribution of u, ii and wand their
derivatives, the actual stresses and displacements at any point being obtained by substitu­
tion into equations (2)-(8).

For each K value chosen equations (10)-(11) were solved numerically, using the
Gill-Kutta procedure, to give three basic solutions to the elasticity equations. The first
solution corresponded to loads of'liR = 1·0'li8 = 'liZ = 0 on the loaded lateral boundary
of the plate and zero values of these quantities on the unloaded boundary. The second and
third solutions corresponded, in turn, to unit values of 'li8 and 'liZ, respectively on the
loaded boundary, the remaining loads on both boundaries being zero.

For each plate thickness considered the overall stress distribution was obtained from
a linear combination of the solutions corresponding to K = 0 with the outer lateral
boundary of the plate loaded. From equation (2) it is seen that the axial displacement of
this solution is zero and hence this is the "plane strain" solution. "Corrections" to this
solution in the region of the hole were achieved by superimposing solutions corresponding
to nineteen further values ofK, with the inner lateral boundary loaded. The exact magnitude
of the K values did not appear critical and an acceptable level of accuracy was achieved
in each case by distributing the values of K . T between 0 and 10.

Great care, however, was needed in the positioning of points at which conditions
were to be matched along the terminal boundary of the plate. In applications of the point
matching technique it is essential to concentrate the points around the regions of high
stress gradient since failure to do this will result in large errors in the boundary conditions
between the matched points. This meant that a high concentration of points was required
around the hole with a gradual reduction in intensity as the distance from the hole
increased. However, the total number of points must be kept to a minimum to avoid
unnecessary calculation. It was found in practice that between 50 and 60 matched points
were sufficient for all the problems examined.

The regions away from the hole "plane" conditions exist and in order to simulate
an infinite plate all solutions were truncated at R 20 and the specified stresses at this
boundary were those given by the "plane" solutions.

DISCUSSION OF RESULTS

Using the KT values and boundary points established previously, several thicknesses
of plate were analysed for a material of Poisson's ratio of 0-25. This value of Poisson's
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ratio was chosen so that a direct comparison could be made between the point matched
results and those of Youngdahl and Sternberg [7] which were considered the most accurate
of the previous solutions. Figures 1 and 2 show the axial variation of the hoop and axial
stresses, respectively at R = 1 for various plate thicknesses. The boundary effect is clearly
evident, its effect being more pronounced in thick plates. It is apparent that the "plane"
solutions to this problem will only predict the axial and hoop stresses accurately in the
region of the hole for two situations: (a) in the mid-section of thick plates where "plane
strain" conditions exist and (b) in extremely thin plates where the boundary effect is
negligible and "plane stress" conditions exist. However, the use of the "plane" solutions
in establishing the stress concentration effect of the hole is justified as the maximum value
of the hoop stress is predicted to within 4 per cent of its true value in the worst case.

Figure 3 indicates the axial variation of the displacements at R = 1. The radial,
circumferential and axial displacements converge on their "plane stress" values for
increasingly thin plates and for thick plates they approach their "plane strain" values
at the mid-section. At the surface of thick plates the radial displacement approximates to
its "plane stress" value. The hoop displacement increases from its "plane strain" value
at the mid-section of the plate as if to attain its "plane stress" value at the surface. However,
in a localized region near the surface of the plate, this displacement decays rapidly and is
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FIG. 1. Axial decay of hoop stress at R "" 1.
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considerably less than its "plane stress" value at the surface. The axial displacement is
also affected by the boundary layer and its value at the surface is predicted reasonably
accurately by the "plane stress" solution only when the thickness ratio ofthe plate is small.

To obtain the displacements transmitted to the base of the photoelastic gauge, the
displacements experienced in stretching the plate prior to drilling the hole must be
subtracted from the displacements determined above. These are:

2J1.bU = R cos 26

2PbV = -R sin 26

W=O.
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Thus the displacements appropriate to the gauge problem are obtained and the radial
variation of these displacements at the metal surface is illustrated in Figs. 4 and 5 for a
metal of Poisson's ratio 0·25. The radial and circumferential displacements approximate
to their "plane stress" values, the circumferential displacement being approximately
10 per cent lower than this value. The axial displacements transmitted to the gauge are
considerably greater than those predicted by the "plane" solutions, their values in a
thick plate being in order of the Poisson's ratio times the radial displacement. For the
purpose of obtaining the actual displacements to be used in the analysis of the photo­
elastic gauge, a metal of Poissons ratio 0·3 was chosen as representative of typical
engineering materials. Thickness ratios T = 10 and T = 0 were used since these thicknesses
produced the largest and smallest axial displacements. The displacements for T = 10
at the base of the gauge are illustrated in Fig. 6.
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FIG. 4. Change in displacement at the surface of a metal of Poissons ratio of 0·25.

ACCURACY OF RESULTS

Comparison of the results obtained for a plate of thickness ratio T = 10 with those
obtained by Youngdahl and Sternberg [7] for an infinitely thick plate show less than a
1 per cent discrepancy. The results obtained for thinner plates are assumed to have the
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same accuracy since it was possible to match the boundary conditions even more accurately
in these plates. The mean value of the errors in the matched conditions was less than
0·1 per cent for thin plates and less than 0·5 per cent in the plate of thickness ratio T 10.

CONCLUSIONS

The stress concentration effect of holes in plates with equiaxial stresses of opposite
sign is, for all practical purposes, independent of the thickness ratio of the plate. The
maximum stress always occurs at the hole boundary and has a value slightly in excess of
four. The displacements in the region of the hole, however, are not predicted with the
same degree of accuracy by the "plane" solutions and thus the use of these in solving
problems such as that of the "shear lag" problem would give erroneous results.

II. A THREE DIMENSIONAL ANALYSIS OF THE PHOTOELASTIC GAUGE

INTRODUCflON

THEORETICAL investigations into the "shear lag" effect in bonded photoelastic gauges
in regions away from the gauge boundaries have been performed by Duffy [14] and Post
and Zandman [t5]. Investigations into this effect in the region of the hole in an annular
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gauge were initiated by Gibbs et al. [16] who used a relaxation technique to obtain an
approximate solution for a gauge ofa specific geometry. Subsequently Hooke and Stagg [17]
obtained results for various gauge geometries by assuming zero axial displacement in
the gauge and simulating the modified boundary conditions using a Fourier series loading.

Both of these latter theoretical solutions assumed a "plane strain" situation in the
metal to obtain the displacements at the gauge-metal interface. From the results obtained
in the previous section it is clear that this assumption is invalid.

Similarly the use of "plane" solutions in the analysis of the gauge is only justified
for thin gauges in which the decay of the strains through the thickness is minimal. Even
here the assumption of zero axial displacements in the gauge will only give accurate
results when the axial displacements transmitted to the base of the gauge are small i.e. for
a gauge bonded to a metal of a small thickness ratio.
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Because of the limiting nature of the assumptions proposed above it was decided to
obtain a complete three dimensional analysis of gauges of various geometries using a
technique similar to the one used in determining the metal displacements.

CALCULAnON OF THE STRESSES IN THE GAUGE

In Part I the stresses in the metal were assumed to be a combination of two basic
stress systems. The displacements transmitted to the gauge by a metal loaded in the first
system are given by the plane stress solution. They are:

1 1
U=--

2Jl" R

v= w= O.

(1)

The displacements at the gauge metal interface for the second system have been
determined numerically in Part I and for a metal of Poisson's ratio 0·3 and thickness
ratio T = 10 these are given in Fig. 6.

For a gauge attached to a metal loaded in either of these two systems the respective
displacements form the boundary conditions along the base of the gauge. In both cases
the conditions along the remaining boundaries of the gauge are:
at

R=l

and

at

R=B

Z=T

(2)

In neither system do the "plane" solutions satisfy these boundary conditions and
hence approximate three dimensional solutions for both systems have to be determined.

(a) Equal principal stresses of the same sign

The boundary conditions of this system suggest that an appropriate form of displace­
ment function would be

2Jl"U = ucos(KZ +<!»

2,u"W = w sin(KZ+<!»

v=o
(3)

where the line Z = 0 corresponds to the base of the gauge, and u and ware functions of
the radius only. No assumptions can be made as to the symmetry of the displacements
in the gauge and an additional constant <!> is introduced to allow for both symmetrical
and skew symmetrical displacements.
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Substituting equation (3) into the stress-displacement equations the following
relationships are obtained:

where

Jl. (dU ) Jl.'RR = ~ -d'+13 cos(KZ+4» = ~'RRcos(KZ+4»
Jl.b R Jl.1>

'88 = Jl.g(~+ 13) cos(KZ +4» = Jl.g'eo cos(KZ +4»
Jl.1> R Jl.1>

'zz = Jl.g(Kw+f3)cos(KZ+4» = Jl.g'zzcos(KZ+4»
Jl.b Jl.b

Jl. (dW ). Jl..
'RZ =~ dR- Ku sm(KZ+4» = ~'Rzsm(KZ+4»

Jl.1> Jl.b

(4)

(5)

(6)

(7)

Substituting equations (4)-(7) into the equilibrium equations in the radial and axial
directions the governing equations for u and w, respectively, are obtained:

(8)

(9)

Equations (8) and (9) were solved using the Gill-Kutta procedure. For each value
of K chosen, eight basic solutions to the elasticity equations were obtained. Initially
the plate was loaded with unit value of L RR on the inner lateral boundary and, having
solved for the radial distribution of the peak values of the displacements and their
derivatives, two solutions were obtained by substituting these values into equations
(3)-(7). The first solution was symmetrical with the constant 4> equal to zero and the
second solution was skew symmetrical with 4> n/2. The next two solutions were obtained
by repeating this procedure with a unit value of LRZ on the inner lateral boundary. The
remaining four solutions were obtained by repeating the procedure for the previous four
except that the loads were transferred to the outer lateral boundary, the inner lateral
boundary being unloaded. It was considered necessary to use solutions that decayed from
both the lateral boundaries of the gauge because of the unpredictable nature of the shear
lag effect in these regions.

For each gauge thickness considered a number of these basic solutions for a range of
values of K were superimposed so as to satisfy the boundary conditions in a least squares
manner.

At any given point in the gauge the difference between the radial and hoop stresses
was then given by

(10)
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where K m is the constant associated with the nth solution and q is the total number of
basic solutions used.

The photoelastic effect observed depends upon the product of the thickness of the gauge
and the mean value of the principal stress difference:

(11)

which upon integration gives

where

The actual fringe order (N) observed for a photoelastic material of fringe coefficientf
and thickness t is then given by:

(12)

(b) Equal principal stresses ofopposite sign

The displacement functions appropriate to the second stress system are:

2Jlb U = ii cos(KZ+ 4» cos 20

2Jlb V = vcos(KZ+ 4» sin 20

2Jlb W = wsin(KZ+ 4» cos 20.

(13)

These are identical to those used in Part I except for the introduction of the constants
Jlb and 4>. The stresses are therefore given by equations (3H8) of Part I with the constant 4>
introduced in the sinusoidal terms and the stresses multiplied by the factor Jlg/2Jlt. None
of these modifications affect the governing equations for ii, v and wwhich are given by
equations (9), (10) and (11) of Part I, respectively.

For each K value chosen, 12 basic solutions to elasticity equations were obtained.
These solutions corresponded to the loadings used for a gauge loaded in the first system
except that an additional four solutions were obtained corresponding to unit values of
r Rii on the inner and outer lateral boundaries of the gauge for each of the values of 4> of 0
and n12. As before the mean values of the required stresses at any radius were obtained.
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The difference between the principal stresses at any radius is then given by

(16)

and hence the fringe order is

INTERPRETATION OF FRINGE PATTERNS

(17)

When the principal stresses are neither equal nor opposite the fringe orders may be
obtained by taking appropriate combinations of equations (12) and (17). For principal
stresses given by S1 and S2 the fringe order at radius r and angle (J to the stress S1 will be

It follows that the directions of the principal stresses coincide with the axes of
symmetry of the fringe pattern. Furthermore the fringe orders at e = 0 and () = 90°,
respectively, are given by

(19)

(20)

By rearranging equations (19) and (20) the principal stresses may be found in terms
of N 1 and N 2 :

t
(r) (r) (r) (r))A - +B - B - -A -

f J1b N 2 a a N 1 a a

S2 = 2t J1g 2 A(~)B(~) +2 A(~)B(~) .

(21)

(22)
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APPLICATION OF THE POINT MATCIDNG TECHNIQUE TO
GAUGES OF VARIOUS THICKNESSES
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The application of the point matching technique to the gauge problem poses several
difficulties not encountered in the determination of the metal displacements.

The boundary conditions of the gauge are mixed i.e. displacements are specified over
part of the boundary and stresses over the remainder of the boundary. It was found that
the stresses were accurately matched but the displacements being far smaller numerically
were poorly matched. This difficulty was overcome by matching displacements multiplied
by the factor 2J1.gjR which made them comparable in magnitude to the stresses.

Great difficulty was also experienced in matching the boundary conditions at the
junctions of the inner and outer lateral boundaries of the gauge and the metal. At these
junctions the displacements must be compatible with those specified along the gauge metal
interface and at the same time give zero radial and shear stresses to satisfy the conditions
on the lateral boundaries of the gauge. This gives a discontinuity in the radial stress and
infinite shear stress gradients at these junctions and these were impossible to match using
the continuous form of solution established previously. It was considered that a small
surface stress would have minimal effect on the stress distribution in the gauge and only
the displacement conditions were matched at these points.

The choice of K values was also given more consideration than had previously seemed
necessary. The number of solutions associated with each K value in the gauge problem
was far greater than in the plate problem and thus it was essential to choose the values
of K carefully so as to avoid forming an unnecessary large number of basic solutions.
In practice it was found that conditions could be accurately matched using less than half
the number of K values used previously.

For thin gauges loaded in the first system the "plane strain" solution closely approxi­
mated the actual stress distribution in the gauge and "corrections" in the region of the
hole were readily achieved by using solutions corresponding to a few high K values.
For thicker gauges two K values were used to provide the localized "corrections" near
the hole and an even distribution of lower K values was used to match the shear lag effect
in regions away from the hole. Consequently the majority of the results were obtained
using solutions corresponding to KTvalues of 0·5, 1,2,3,4,5,7·5 and 9.

For thin gauges loaded in the second stress system solutions corresponding to several
low K values together with the solutions corresponding to K = 0 were used to give the
overall stress distribution. The selection of the K values of the remaining solutions was
similar to that explained above and results were obtained using KT values of 0,0·1,0-4,
1, 2, 3, 4, 6, 9. The positioning of boundary points was similar to that used in the plate
problem. However, in this problem the solutions decayed from both the inner and outer
lateral boundaries of the gauge and it was necessary to use a dense point population in
both these regions.

DISCUSSION OF RESULTS

(a) Equal principal stresses

Figure 7 indicates the variation of « RR - <88) through the thickness of various gauges
at R = 2, the "shear lag" effect being especially pronounced in thicker gauges. Figure 8
shows the radial variation of A(rja) for a gauge material of Poisson's ratio 0·36 and outer
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radius bla = 8. The curve for tja = 0·1 follows extremely closely the plane solutions
except in the immediate vicinity of the hole where the rapid decay of the radial stress
produces a lower fringe order than that predicted by the latter solution. For thicker
gauges the prediction of fringe orders by the "plane" solutions becomes increasingly
erroneous both in the region of the hole and away from this region.

(b) Equal and opposite principal stresses

In this system the axial displacements transmitted to the gauge are significantly
dependent upon the thickness ratio of the metal. In order to establish the significance of
these displacements two cases were considered which were (a) a metal of extremely small
thickness ratio in which the axial displacements are given by the "plane stress" solutions,
(b) a metal of thickness ratio T = 10 in which the axial displacements have reached their
maximum value. The Poisson's ratios of the metal and gauge material were 0·30 and 0·36,
respectively, and the outer diameter of the gauge was at R = 8.

Figures 9 and 10 indicate the radial distribution of B(rja) and C(rja) for case (a), the
corresponding curves for case (b) being given in Figs. 11 and 12. The values of the
coefficients Band C are significantly increased in case (b) the difference being more
pronounced in these gauges. The prime reason for this increase is seen by considering the
curves for a gauge of thickness ratio T = 0 in Fig. 13. This figure indicates the "shear lag"
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FIG. 9. B(rjal for gauges bonded to a metal of Poissons ratio = 0-3 and thickness ratio = O.
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FIG. 10. C(rfa) for gauges bonded to a metal of Poissons ratio = 0·3 and thickness ratio = O.

effect of gauges loaded in the second stress system, the "thin plate" curves corresponding
to case (a) and the "thick plate" to case (b). The curves for T = 0 were obtained by
multiplying the appropriate stress values at the surface of the metal by the ratio of the
shear modulus of the metal to that of the gauge. In case (b) the "boundary layer" effect
in the metal was pronounced and consequently the values of (rRR - roo) and rRO at the
base of the gauge were greater than those predicted by the "plane stress" solution used
in case (a). For infinitely thin gauges, in which the "shear lag" effect is negligible, the
coefficients B(rja) and C(rja) were correspondingly increased.

These coefficients were further increased by the bending effect of the axial displacements
in case (b) as indicated by the curves for T = 0·1. For this gauge thickness the stress
quantities increase linearly through the thickness of the gauge, an effect which is in direct
contradiction to the "shear lag" effect. The bending effect is confined to a localized region
near the base of the gauge and is of negligible importance in thicker gauges where the
stresses decay through the thickness of the gauge in the usual manner. In the thicker
gauges a boundary layer effect is again experienced near the surface of the gauge, this
effect being most noticeable in a gauge of thickness ratio T = 1. In thicker gauges the
shear lag effect is predominant in producing coefficients in cases (a) and (b) which are in
close agreement.
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RECOMMENDED HOLE AND GAUGE DIMENSION FOR THE PRACTICAL
APPLICATION OF THE TECHNIQUE

The theory presented in this paper assumes that the diameter of the hole is small when
compared to the outer dimensions of the metal and consequently this criterion must be
observed in any practical application of the technique. Fringe coefficients have been
determined for two ratios of plate thickness to hole radius, i.e. T = 0 and T = 10. It was
shown that the coefficients B(rla) and C(rla) are significantly dependent upon this latter
ratio and for any thickness ratio other than the two aforementioned values it is necessary
to interpolate between the two sets of results to obtain the appropriate fringe coefficients
for the chosen thickness ratio. To avoid this interpolation it is suggested that the hole
diameter should either be (a) large when compared to the thickness of the plate but small
when compared to its outer dimensions in which case the fringe coefficients in case (a)
can be used; or (b) the hole diameter should be less than half of the depth of the residual
stresses in which case the coefficients obtained in case (b) apply.

The results obtained in this paper are for a ratio of the outer radius of the gauge to the
hole radius of 8. Increasing this value has little effect on the stress distribution. This value
should therefore be regarded as the minimum ratio for which the results presented here
apply.

In normal applications of the photoelastic technique it is advantageous to use a large
material thickness to obtain high fringe orders. However, in this particular application
this increase is effectively nullified by the increased shear lag effect and there is no advantage
in using gauges of greater thickness than the hole diameter.
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The effect of "shear lag" in annular photoelastic gauges has been successfully analysed.
Accurate fringe coefficients have been determined for the use of the gauges in the "hole
drilling" technique. The use of these coefficients eliminates any errors due to "shear lag"
which, if neglected, would in practice lead to an underestimation of the residual stresses of
about 50 per cent even with relatively thin gauges. Recommendations have been made as
to suitable dimensions for the hole and gauge.
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APPENDIX
The application of the point matching technique to any boundary value problem in

elasticity involves initially determining a number of basic solutions to the elasticity equa­
tions. The prescribed boundary conditions at a number of points on the boundary of a
body are then satisfied by superpositioning a number of these solutions.

Suppose at a typical point i on the boundary the prescribed normal stress or displace­
ment is N j and the two prescribed tangential stresses or displacements are 1; and V;.
These normal and tangential quantities are then calculated for each of the basic solutions
at each point on the boundary. The criterion then used in satisfying the boundary conditions
is that the sum of the squares of the errors in the boundary conditions at the N points
shall be a minimum.

The sum of the squares of the errors is given by

N N ( q )2 ( q )2 ( q )2
j~l (E j)2 = j~l N j - k~l akNkj + 1;- k'5;l ak~j + V;- k~l akVkj
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where Nki , Tki and Vki are the normal and tangential quantities, at the point i, as given
by the kth solution and ak is the unknown coefficient associated with this solution.
Differentiating the above expression with respect to each of the unknowns in turn a set
of q simultaneous equations for the q unknown constants is obtained.

N q N

L: (NiNmi+I;Tmi+V;Vmil = L: I ak(NkiNmi+1'"iTmi+VkYmil
i= 1 k= 1 i= 1

rn = 1, 2, 3 ... q.

These equations are then solved for the unknown constants and the final solution is
obtained by superposition of the basic solutions in their appropriate proportions.

(Received 5 April 1971)

A6cTpaKT-0)J.HllM 113 MeTO,UOB 113MepeHII1I OCTaTO'lHhIX HanpllJKeHHH B MeTallllax lIBlllleTCSl npHcoe)J.ll­

HeHHe KOJIbuerOro <jloToynpyroro )J.llCKa K nOBepXHOCTII MeTamIa 11 CBeplleHlle ueHTpH'leCKOrO OTBepcTBlIlI,

CKB03h )J.aT'lIlK, B HHJKe HaXO)J.lllUllllCli MaTepHalle. EClllI CMOTpeTh Ha )J.aT'lIlK B rrOllepll3aUHOHHM coeTe,

Ha6lllOAaeTClI 06pa3 llHTep<PepeHUlloHHhlX rronoc. Uellb HaCToliweH pa60Tbi COCTOHT 0 nOJly'feHHH

HeCllOJKHOH "HaAlleJKaweH" 3aOllCllMOCTH MeJKllY nopSl,UKaMII llHTe<PepeHl.lIIOHHbIX nOllOC 113 H3MepeHllH

II OCTaTO'fHbIMII cywecToylOlUlIMH HarrpSlJKeHllllMII. \.faCTo I o6cyJK)J.aeT Bonpoc pac'leTa nepeMeweHHH 0

MeTTaJIax. B 'faCTII II, onpe)J.elllleTClI rrOllOJKeHlle cyMMapHhIX HanpJlJKeHHH 0 .l\aT'iIlKe. 3aTeM npe.l\CTaO­

JlJlIOTClI <jlaKTopbl rpa)J.yllpoBKM AllSl lllllpOKoro Kpyra reOMeTpllll .l\aT'lllKOB.


